DS05-30326-1E

MEMORY

FLASH MEMORY CARD PCMCIA Rel.2/JEIDA Ver.4 conformable

MB98A8113x-/8123x-/8133x-/8143x-20

FLASH ERASABLE AND PROGRAMMABLE MEMORY CARD 2 M/4 M/8 M/16 M-BYTE

■ DESCRIPTION

The Fujitsu MB98A8113x, MB98A8123x, MB98A8133x and MB98A8143x are electrically erasable and programmable (Flash) memory cards capable of storing and retrieving large amounts of data. The memory circuits are housed in a credit-card sized 68-pin package. Internal circuit is protected by two metal panels, one at the top and the other at the bottom of the card, that help to reduce chip damage from electrostatic discharge.

A unique feature of the Fujitsu memory cards allows the user to organize the card into either an 8-bit or a 16-bit bus configuration. All cards are portable and operate on low power at high speed.

In accordance with the Personal Computer Memory Card Internal Association (PCMCIA) and Japan Electrical Industry Development Association (JEIDA) industry standard specifications, Flash memory cards offer additional EEPROM memory that is used to store attribute data. The attribute memory is a Flash memory card option. (See page 2 for description of the three available options.)

- Conformed to PCMCIA and JEIDA industry standards.
- Credit card size: 85.6 mm (length) × 54.0 mm (width) × 3.3 mm (thickness)
- PCMCIA/JEIDA conformed two-piece 68-pin connector (with a two-row built-in receptacle)
- Single +5 V ±5% power supply (+12.0 V ±5%V_{PP})
- Command control for Automated Program/Automated Erase operation
- Write protect function
- Erase Suspend Capability
- Status Resister Capability
- 128 KB Block Erase (at ×16 mode)

■ PACKAGE

(CRD-68P-M05)

■ ATTRIBUTE MEMORY OPTIONS

PCMCIA and JEIDA standard memory cards from Fujitsu provide a separate EEPROM memory address space for recording fundamental card information. It is used by the customers to record basic configuration information such as device type, size, speed, etc.

The attribute memory is selected by asserting the REG pin on the card interface. Option descriptions as follows:

OPTION 1: Attribute memory is not supported.

REG Pin: Not Contacted

(JEIDA Ver. 3 conformable)

	Main Memory		Attribute Men	nory	
Part Number	Memory Device	Access Time	Memory Device	Access Time	Memory Organization *
MB98A81131	8 M Flash Memory × 2 pcs	200 ns	_	_	2 M × 8 bits/1 M × 16 bits
MB98A81231	8 M Flash Memory × 4 pcs	200 ns	_	_	4 M × 8 bits/2 M × 16 bits
MB98A81331	8 M Flash Memory × 8 pcs	200 ns	_	_	$8 \text{ M} \times 8 \text{ bits/4 M} \times 16 \text{ bits}$
MB98A81431	8 M Flash Memory × 16 pcs	200 ns	_	_	16 M × 8 bits/8 M × 16 bits

OPTION 2: Attribute memory in a separate location is not supported.

When \overline{REG} line is asserted, "FF" is output to the data bus to indicate that attribute data may be stored in main memory.

(PCMCIA Rel. 2/JEIDA Ver. 4 conformable)

	Main Memory		Attribute Men	nory		
Part Number	Memory Device	Access Time	Memory Device	Access Time	Memory Organization *	
MB98A81132	8 M Flash Memory × 2 pcs	200 ns	_	_	2 M × 8 bits/1 M × 16 bits	
MB98A81232	8 M Flash Memory × 4 pcs	200 ns	_	_	4 M × 8 bits/2 M × 16 bits	
MB98A81332	8 M Flash Memory × 8 pcs	200 ns	_	_	$8 \text{ M} \times 8 \text{ bits/4 M} \times 16 \text{ bits}$	
MB98A81432	8 M Flash Memory × 16 pcs	200 ns	_	_	16 M × 8 bits/8 M × 16 bits	

OPTION 3: Attribute memory is supported. The data is stored in 64 K-bit EEPROM.

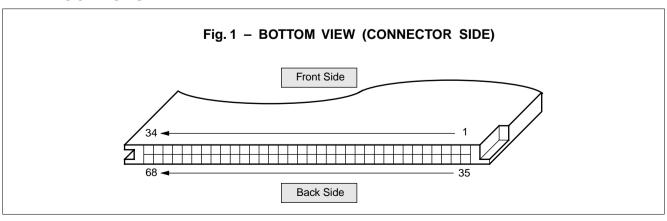
When the REG line is asserted, data stored in EEPROM is output to the data bus.

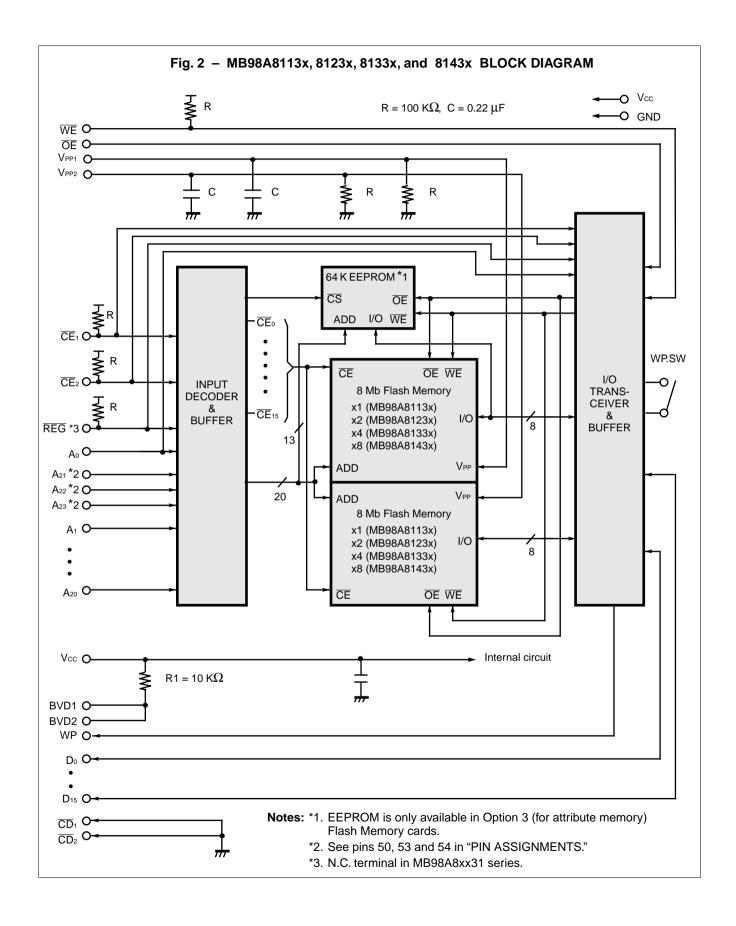
(PCMCIA Rel. 2/JEIDA Ver. 4 conformable)

	Main Memory		Attribute Men	nory		
Part Number	Memory Device	Access Time	Memory Device	Access Time	Memory Organization *	
MB98A81133	8 M Flash Memory × 2 pcs	200 ns	EEPROM × 1 pcs	300 ns	2 M × 8 bits/1 M × 16 bits	
MB98A81233	8 M Flash Memory × 4 pcs	200 ns	EEPROM × 1 pcs	300 ns	4 M × 8 bits/2 M × 16 bits	
MB98A81333	8 M Flash Memory × 8 pcs	200 ns	EEPROM × 1 pcs	300 ns	8 M × 8 bits/4 M × 16 bits	
MB98A81433	8 M Flash Memory × 16 pcs	200 ns	EEPROM × 1 pcs	300 ns	16 M × 8 bits/8 M × 16 bits	

^{*:} To be configured by user.

■ PIN ASSIGNMENTS


MB98A8113x	MB98A8123x	MB98A8133x	MB98A8143x	Pin	No.	MB98A8113x	MB98A8123x	MB98A8133x	MB98A8143x
GND	GND	GND	GND	1	35	GND	GND	GND	GND
D ₃	Dз	D ₃	D ₃	2	36	CD ₁	CD ₁	CD ₁	CD ₁
D ₄	D ₄	D ₄	D ₄	3	37	D ₁₁	D ₁₁	D ₁₁	D ₁₁
D ₅	D 5	D ₅	D ₅	4	38	D ₁₂	D ₁₂	D ₁₂	D ₁₂
D ₆	D ₆	D ₆	D ₆	5	39	D ₁₃	D ₁₃	D ₁₃	D ₁₃
D ₇	D ₇	D ₇	D ₇	6	40	D ₁₄	D ₁₄	D ₁₄	D ₁₄
Œ₁	Œ₁	CE ₁	<u>CE</u> ₁	7	41	D ₁₅	D ₁₅	D ₁₅	D ₁₅
A ₁₀	A ₁₀	A ₁₀	A ₁₀	8	42	CE ₂	Œ2	Œ2	CE ₂
ŌĒ	ŌĒ	ŌĒ	ŌĒ	9	43	N.C.	N.C.	N.C.	N.C.
A ₁₁	A ₁₁	A ₁₁	A ₁₁	10	44	N.C.	N.C.	N.C.	N.C.
A 9	A 9	A 9	A 9	11	45	N.C.	N.C.	N.C.	N.C.
A8	A 8	A 8	A8	12	46	A ₁₇	A 17	A 17	A 17
A ₁₃	A 13	A ₁₃	A ₁₃	13	47	A ₁₈	A ₁₈	A ₁₈	A ₁₈
A ₁₄	A ₁₄	A ₁₄	A ₁₄	14	48	A 19	A 19	A 19	A 19
WE	WE	WE	WE	15	49	A ₂₀	A ₂₀	A ₂₀	A ₂₀
N.C.	N.C.	N.C.	N.C.	16	50	N.C.	A ₂₁	A ₂₁	A ₂₁
Vcc	Vcc	Vcc	Vcc	17	51	Vcc	Vcc	Vcc	Vcc
V _{PP1}	V_{PP1}	V _{PP1}	V _{PP1}	18	52	V _{PP2}	V _{PP2}	V _{PP2}	V _{PP2}
A ₁₆	A 16	A ₁₆	A 16	19	53	N.C.	N.C.	A ₂₂	A ₂₂
A 15	A 15	A 15	A 15	20	54	N.C.	N.C.	N.C.	A ₂₃
A ₁₂	A 12	A ₁₂	A ₁₂	21	55	N.C.	N.C.	N.C.	N.C.
A ₇	A 7	A ₇	A 7	22	56	N.C.	N.C.	N.C.	N.C.
A ₆	A 6	A 6	A 6	23	57	N.C.	N.C.	N.C.	N.C.
A 5	A 5	A 5	A 5	24	58	N.C.	N.C.	N.C.	N.C.
A ₄	A ₄	A 4	A ₄	25	59	N.C.	N.C.	N.C.	N.C.
Аз	Аз	Аз	Аз	26	60	N.C.	N.C.	N.C.	N.C.
A ₂	A_2	A ₂	A ₂	27	61	REG/N.C.*	REG/N.C.*	REG/N.C.*	REG/N.C.*
A ₁	A 1	A 1	A ₁	28	62	BVD2	BVD2	BVD2	BVD2
A ₀	Ao	Ao	Ao	29	63	BVD1	BVD1	BVD1	BVD1
D ₀	D ₀	D ₀	D ₀	30	64	D ₈	D ₈	D ₈	D ₈
D ₁	D ₁	D ₁	D ₁	31	65	D ₉	D ₉	D ₉	D ₉
D ₂	D ₂	D ₂	D ₂	32	66	D ₁₀	D ₁₀	D ₁₀	D ₁₀
WP	WP	WP	WP	33	67	∇D ₂	CD ₂	CD ₂	ŪD₂
GND	GND	GND	GND	34	68	GND	GND	GND	GND


^{*:} N.C. terminal in MB98A8xx31 series.

■ PIN DESCRIPTIONS

Symbol	Pin Name	Input/Output	Function
A ₀ to A ₂₃	Address Input	Input	Address Inputs, A ₀ to A ₂₃ .
Do to D ₁₅	Data Input/Output	Input/Output	Data Inputs/Outputs. This data bus size (8-bit or 16-bit) is selected with \overline{CE}_1 and \overline{CE}_2 .
CE ₁	Card Enable for Lower Byte	Input	Active Low Lower byte (D₀ to D₁) is selected for read/write/ erase function of flash memory cards.
CE ₂	Card Enable for Upper Byte	Input	Active Low Upper byte (D ₈ to D ₁₅) is selected for read/write / erase function of flash memory cards.
REG	Attribute Memory Select	Input	Active Low Attribute memory is selected for read/write function of identification data of flash memory cards. (N.C. or "FF" data or attribute data.)
ŌĒ	Output Enable	Input	Active Low Output enable for flash memory cards.
WE	Write Enable	Input	Active Low Write enable for flash memory cards.
V _{PP1}	Programming Voltage 1	Input	Programming voltage for lower byte.
V _{PP2}	Programming Voltage 2	Input	Programming voltage for upper byte.
$\overline{CD}_1, \overline{CD}_2$	Card Detect	Output	These pins detect if the card has been correctly inserted. Both pins are tied to GND internally.
WP	Write Protect	Output	Write controller for flash memory cards. This pin outputs the Protect/Non Protect status of "WP Switch".
BVD1, BVD2	Battery Voltage Detect	Output	Both pins are tied to Vcc internally.
Vcc	Power Supply	_	Power Supply Voltage. (+5.0 V ±5%)
GND	Ground	_	System Ground.
N.C.	Non Connection	_	

■ PIN LOCATIONS

■ FUNCTION DESCRIPTIONS

MB98A8113x, 8123x, 8133x and 8143x have the common memory and the attribute one, and \overline{REG} selects the common memory ($\overline{REG} = V_{IH}$) or the attribute memory ($\overline{REG} = V_{IL}$).

MB98A8xx31 has the common memory only and \overline{REG} pin is non-connected. If the attribute data is necessary, the data is programmed into the common memory. MB98A8xx32 has also the common memory only and "FFH" is output if the attribute data is read. MB98A8xx33 has both common memory and attribute memory.

1. Read Mode

The data in the common and attribute memory can be read with " $\overline{OE} = V_{IL}$ " and " $\overline{WE} = V_{IH}$ ". The address is selected with A_0 to A_{23} . And \overline{CE}_1 and \overline{CE}_2 select output mode (×8/×16 output mode). The following 1) and 2) are the descriptions for Common Memory Read and Attribute Memory Read mode.

1) Common Memory Read

Three modes of Common Memory Read, reading the data in memory array, Intelligent ID and Status Register, are available. The card entered each Read Mode by writing "Read Memory/Reset Command", "Intelligent ID Read Command" or "Status Register Read Command". At writing each command, VPP is "VPPL" or "VPPH". The card automatically resets to the condition of Common Memory Read Mode upon initial power-up.

2) Attribute Memory Read

- The data on the attribute memory can be read with " $\overline{REG} = V_{IL}$ ", " $\overline{OE} = V_{IL}$ " and " $\overline{WE} = V_{IH}$ ".
- An address on attribute memory can be selected with A_0 to A_{13} pin. And \overline{CE}_1 and \overline{CE}_2 select output mode.

2. Standby Mode

 — CE₁ and CE₂ at "V_{IH}" place the card in Standby mode. D₀ to D₁₅ are placed in a high-Z state independent of the status "OE", "WE" and "REG".

3. Output Disable Mode

The outputs are disabled with OE and WE at "V_{IH}". D₀ to D₁₅ are placed in high-Z state.

4. Write Mode

- 1) Common Memory Write
 - − The card is in Write mode with " $\overline{OE} = V_{H}$ " and " \overline{WE} and $\overline{CE} = V_{L}$ ". Commands can be written at the write mode.
 - VPP must be placed in "VPPH" at programming and erase operations only. And "VPP = VPPL or VPPH" at other write mode. Two types of the write mode, "WE control" and "CE control" are available.

2) Attribute Memory Write

- $\overline{\text{REG}}$ at L-level selects Attribute memory and " $\overline{\text{OE}} = V_{\text{H}}$ ", " $\overline{\text{WE}}$ and $\overline{\text{CE}} = V_{\text{L}}$ " place it in write mode. Two types of the write mode, " $\overline{\text{WE}}$ control" and " $\overline{\text{CE}}$ control" are available.
- Attribute memory is not controlled by writing Commands. And attribute memory has the data polling function, which can detect whether the card status is programming operation. If the read operation is executed at programming cycle, the opposite data (\$\overline{\gamma}_{7}\$) to written data is output from \$\overline{\gamma}_{7}\$ pin at the programming operation, and the same data (\$\overline{\gamma}_{7}\$) as the written data is output from \$\overline{\gamma}_{7}\$ pin at the completion of programming operation.

5. Automated Program Capability

- The card automatically executes the operation from programming to verification by one time of writing "Setup Program/Program command".
- Address and data are latched at rising edge of WE or CE.
- The card contains a Status Register which is read to check whether a byte (word) programming operation is completed successfully.
- If VPP goes "VPPL" at programming operation, VPPS of Status Register does not indicate "1", but a result of the programming is not guaranteed. In this case, there is a possibility that the incorrect data are written and therefore, the written data should be erased to be reprogrammed.

6. Automated Erase Capability

- The card automatically executes the operation from erasing to verification by one time of writing "Setup erase/ erase command".
- Address and data are latched at rising edge of "WE" or "CE".
- Whether or not block erase operation is completed successfully can be checked by reading Status Register.
- If V_{PP} goes "V_{PPL}" at erase operation, VPPS of Status Register does not indicate "1", but a result of the erase is not guaranteed. Therefore, erase should be executed once again.

7. Status Register

- The card contains a Status Register for each chip to show the status of the common memory.
- Status Register is automatically read after Status Register Read command, Program command, Erase command, Erase Resume command or Erase Suspend command is input. After writing this command, all subsequent read operations output data from the status register until another valid command is written.
- The contents of Status Register are latched on the falling edge of OE or CE, whichever occurs last in the cycle. OE or CE must be toggled to V_{IH} before further reads to update the Status Register latch.
- The Read Status Register command functions when VPP = VPPL or VPPH.

8. Erase Suspend

- The Erase Suspend Command allows block erase interruption in order to read data from another block of memory.
- By writing the Erase Suspend Command (B0H) to chip in erasing state, the Write State Machine (WSM) suspends the erase sequence in the erase algorithm. At this point, a Read Command (FFH) can be written to read the data from block other than that suspended.
- Other valid commands at this time are Read Status Register (70H) and Erase Resume (D0H). By writing the
 Erase Resume Command into the chip with suspended block, the WSM will execute the erase process again.
- VPP must remain at VPPH while the card is in Erase Suspend.
- The Erase Suspend status can be checked by Status Register Read. When Erase Suspend Status (ESS) bit of Status Register is "1", the card is in the Suspend Status. At erase operation, "0" is output from Write State Machine Status (WSMS) bit. At erase suspend status, "1" is output from WSMS.

9. Intelligent Identifier (ID) Read Mode

- Each common memory can execute an intelligent identifier operation, initiated by writing Intelligent ID command (90H). Following the command write, a read cycle from address 00H retrieves the manufacture code of 89H, and a read cycle from address 01H returns the device code of A2H. To terminate the operation, it is necessary to write another valid command.
- The intelligent ID command is functional when VPP = VPPL or VPPH.

■ FUNCTIONAL TRUTH TABLE

MAIN MEMORY FUNCTION *1

Read Function (REG = VIH)

CE ₂	<u>CE</u> ₁	Αo	ΘĒ	WE	WP *2	V _{PP2}	V _{PP1}	Mode	Data Inpi	ut/Output	WP SW
CE2	CE1	Au	OE	VVE	VVF Z	V PP2	V PP1	Wode	D ₈ to D ₁₅	D ₀ to D ₇	WE SW
Н	Н	Х	Х	Х	Х	V _{PPX}	V _{PPX}	Standby	Hig	h-Z	P or NP
Н	L	L	L	Н	X	V _{PPX}	V _{PPX}	Read (×8 No.1)	High-Z	D _{OUT} (Lower Byte)	P or NP
Н	L	Н	L	Н	Х	V _{PPX}	VPPX	Read (×8 No.1)	High-Z	D _{оит} (Upper Byte)	P or NP
L	Н	Х	L	Н	X	V _{PPX}	V _{PPX}	Read (×8 No.2)	D _{оит} (Upper Byte)	High-Z	P or NP
L	L	Х	L	Н	Х	V _{PPX}	V _{PPX}	Read (×16) Dout		P or NP	
Х	Х	Χ	Н	Н	Х	V _{PPX}	V _{PPX}	Output Disable High-Z		P or NP	

Write Command/Erase/Program Function (REG = V_{IH})

CE ₂	Œ₁	Αo	ΘĒ	WE	WP *2	V _{PP2}	V PP1	Mode	Data Inpi	ut/Output	WP SW
CE2	CE1	Au	OE	VVE	VVF Z	V PP2	V PP1	Wode	D ₈ to D ₁₅	D ₀ to D ₇	VVF SVV
Н	Н	Χ	Х	Х	Х	V _{PPX} *3	V _{PPX} *3	Standby	High-Z		P or NP
Н	L	L	L	Н	X	V _{PPX}	V _{PPX} *3	Read (×8 No.1)	High-Z	Dоит (Lower Byte)	P or NP
Н	L	Н	L	Н	X	V _{PPX} *3	V _{PPX}	Read (×8 No.1)	High-Z	D _{оит} (Upper Byte)	P or NP
Н	L	L	Н	L	L	V _{PPX}	V _{PPX} *3	Write (×8 No.1)	High-Z	D _{IN} (Lower Byte)	NP
Н	L	Н	Н	L	L	V _{PPX} *3	V _{PPX}	Write (×8 No.1)	High-Z	D _{IN} (Upper Byte)	NP
L	Н	Χ	L	Н	X	V _{PPX} *3	V _{PPX}	Read (×8 No.2)	D _{оит} (Upper Byte)	High-Z	P or NP
L	Н	X	Н	L	L	V _{PPX} *3	V _{PPX}	Write (×8 No.2)	D _{IN} (Upper Byte)	High-Z	NP
L	L	Χ	L	Н	X	V _{PPX} *3	V _{PPX} *3	Read (×16)	D оит		P or NP
L	L	Χ	Н	L	L	V _{PPX} *3	V _{PPX} *3	Write (×16) D _{IN}		NP	
Х	Х	Χ	Н	Н	L	V _{PPX} *3	V _{PPX} *3	Output Disable	Hig	h-Z	P or NP

Notes: *1. $H = V_{IH}$, $L = V_{IL}$, $X = Either V_{IL}$ or V_{IH} , WP SW = Write Protect Switch, <math>P = Protect, NP = Non Protect

^{*2.} L-level is output when WP SW = NP. H-level is output when WP SW = P.

^{*3.} VPP must be VPPH at Program/Erase cycle.

ATTRIBUTE MEMORY FUNCTION *1 (REG = VIL) *2

CE ₂	CE ₁	Ao	ΘĒ	WE	WP	Mode	Data Inp	ut/Output	WP SW
CE2	GE1	Au	OE	VVE	VVF	Wode	D ₁₅ to D ₈	D ₇ to D ₀	VVF SVV
Н	Н	Х	Х	Х	L	Standby	Hig	NP	
Н	L	L	L	Н	L	Read (×8 No.1)	High-Z	Dоит *3 (Lower Byte)	NP
Н	L	Н	L	Н	L	Read (×8 No.1)	High-Z	Н	NP
Н	L	L	Н	L	L	Write (×8 No.1)	High-Z	D _{IN} *4 (Lower Byte)	NP
Н	L	Н	Н	L	L	Write (×8 No.1)	High-Z	Х	NP
L	Н	Х	L	Н	L	Read (×8 No.2)	Н	High-Z	NP
L	Н	Х	Н	L	L	Write (×8 No.2)	High-Z	High-Z	NP
L	L	Х	L	Н	L	Read (×16)	Н	Dоит *3 (Lower Byte)	NP
L	L	Х	Н	L	L	Write (×16)	X	D _{IN} *4 (Lower Byte)	NP
Х	Х	Х	Н	Н	L	Output Disable	Hig	jh-Z	NP

Н	Н	Х	Х	Х	Н	Standby	Hig	ıh-Z	Р
Н	L	L	L	Н	Н	Read (×8 No.1)	High-Z	Dоит *3 (Lower Byte)	Р
Н	L	Н	L	Н	Н	Read (×8 No.1)	High-Z	Н	Р
Н	L	L	Н	L	Н	Output Disable	Hig	jh-Z	Р
Н	L	Н	Н	L	Н	Output Disable	Hig	Р	
L	Н	Х	L	Н	Н	Read (×8 No.2)	Н	High-Z	Р
L	Н	Х	Н	L	Н	Output Disable	Hig	Р	
L	L	Х	L	Н	Н	Read (×16)	Н	Dоит *3 (Lower Byte)	Р
L	L	Х	Н	L	Н	Output Disable	Hig	jh-Z	Р
Х	Х	Х	Н	Н	Н	Output Disable	Hig	ıh-Z	Р

Notes: *1. $H = V_{IH}$, $L = V_{IL}$, $X = Either V_{IL}$ or V_{IH} , WP SW = Write Protect Switch, <math>P = Protect, NP = Non Protect

^{*2.} N.C. for MB98A81131, 81231, 81331, and 81431.

^{*3.} H-level is output for MB98A81132, 81232, 81332, and 81432.

 $^{^{*}4.~^{``}}X"$ for MB98A81132, 81232, 81332 and 81432.

■ ADDRESS CONFIGURATIONS *1 (MAIN MEMORY)

8-BIT BUS ORGANIZATION No.1 ($\overline{CE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IH}$)

Chip Address A ₂₃ to A ₂₁ , A ₀	Block Address A ₂₀ to A ₁₇		Byte A A ₁₆ t	ddress o A1		Œ2	Œ₁	D ₁₅ to D ₈	D₁ to D₀
0000	0000	0000	0000	0000	0000	Н	L		0 Add.
0001	0000	0000	0000	0000	0000	Н	L		1 Add.
0000	0000	0000	0000	0000	0001	H	L		2 Add.
0001	0000	0000	0000	0000	0001	H	L		3 Add.
↓	\downarrow	↓	\downarrow	\downarrow	\downarrow	↓	↓	\downarrow \downarrow	\downarrow \downarrow
1110	1111	1111	1111	1111	1110	Н	L		16,777,212 Add.
1111	1111	1111	1111	1111	1110	Н	L		16,777,213 Add.
1110	1111	1111	1111	1111	1111	Н	L		16,777,214 Add.
1111	1111	1111	1111	1111	1111	Н	L		16,777,215 Add.

8-BIT BUS ORGANIZATION No.2 ($\overline{CE}_1 = V_{IH}$, $\overline{CE}_2 = V_{IL}$) *2

Chip Address A ₂₃ to A ₂₁ , A ₀	Block Address A ₂₀ to A ₁₇		Byte A A ₁₆ t	ddress o A1		CE ₂	CE ₁	D ₁₅ to D ₈	D ₇ to D ₀
000X	0000	0000	0000	0000	0000	L	Н	1 Add.	
000X	0000	0000	0000	0000	0001	L	Н	3 Add.	
000X	0000	0000	0000	0000	0010	L	Н	5 Add.	
000X	0000	0000	0000	0000	0011	L	Н	7 Add.	
\downarrow	\downarrow	↓	\downarrow	\downarrow	\downarrow	↓	↓	\downarrow \downarrow	\downarrow \downarrow
111X	1111	1111	1111	1111	1100	L	Н	16,777,209 Add.	
111X	1111	1111	1111	1111	1101	L	Н	16,777,211 Add.	
111X	1111	1111	1111	1111	1110	L	Н	16,777,213 Add.	
111X	1111	1111	1111	1111	1111	L	Н	16,777,215 Add.	

16-BIT BUS ORGANIZATION ($\overline{CE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IL}$)

Chip Address A ₂₃ to A ₂₁ , A ₀	Block Address A ₂₀ to A ₁₇		Byte A A ₁₆ t	ddress o A1		CE ₂	Œ₁	D ₁₅ to D ₈	D ₇ to D ₀
000X	0000	0000	0000	0000	0000	L	L	1 Add.	0 Add.
000X	0000	0000	0000	0000	0001	L	L	3 Add.	2 Add.
000X	0000	0000	0000	0000	0010	L	L	5 Add.	4 Add.
000X	0000	0000	0000	0000	0011	L	L	7 Add.	6 Add.
↓	\downarrow	↓	\downarrow	\downarrow	\downarrow	↓	↓	\downarrow \downarrow	\downarrow \downarrow
111X	1111	1111	1111	1111	1100	L	L	16,777,209 Add.	16,777,208 Add.
111X	1111	1111	1111	1111	1101	L	L	16,777,211 Add.	16,777,210 Add.
111X	1111	1111	1111	1111	1110	L	L	16,777,213 Add.	16,777,212 Add.
111X	1111	1111	1111	1111	1111	L	L	16,777,215 Add.	16,777,214 Add.

Notes: *1. $H = V_{IH}$, $L = V_{IL}$, $X = Either 0 or 1. <math>\overline{REG} = "H"$.

^{*2.} Even addresses can not be selected.

■ ADDRESS CONFIGURATIONS *1 (ATTRIBUTE MEMORY)

8-BIT BUS ORGANIZATION No.1 ($\overline{CE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IH}$)

A23 to A14	A ₁₃ to A ₀	CE ₂	Œ₁	D ₁₅ to D ₈	D ₇ to D ₀
XX — XX	0 0000	Н	L		0 Add.
XX XX	0 0001	Н	L		
XX XX	0 0010	Н	L		2 Add.
XX — XX	0 0011	Н	L		
\downarrow \downarrow	↓ ↓	\downarrow	↓	\downarrow \downarrow	\downarrow \downarrow
XX XX	1 1100	Н	L		16,380 Add.
XX XX	1 1101	Н	L		
XX XX	1 1110	Н	L		16,382 Add.
XX — XX	1 1111	Н	L		

8-BIT BUS ORGANIZATION No.2 $(\overline{CE}_1 = V_{IH}, \overline{CE}_2 = V_{IL}) *2$

A ₂₃ to A ₁₄	A ₁₃ to A ₀	CE ₂	CE₁	D ₁₅ to D ₈	D ₇ to D ₀
XX — XX	0 000X	L	Н		
XX — XX	0 001X	L	H		
XX — XX	0 010X	L	H		
XX — XX	0 011X	L	Н		
↓ ↓	↓ ↓	\downarrow	↓	↓ ↓	↓ ↓
XX — XX	1 100X	L	H		
XX — XX	1 101X	L	Н		
XX — XX	1 110X	L	Н		
XX — XX	1 111X	L	Н		

16-BIT BUS ORGANIZATION ($\overline{CE}_1 = V_{IL}, \overline{CE}_2 = V_{IL}$)

A23 to A14	A ₁₃ to A ₀	CE ₂	Œ₁	D ₁₅ to D ₈	D ₇ to D ₀
XX — XX	0 000X	L	L		0 Add.
XX XX	0 001X	L	L		2 Add.
XX — XX	0 010X	L	L		4 Add.
XX XX	0 011X	Ļ	Ļ		6 Add.
↓ ↓	↓	↓	↓	↓ ↓	↓ ↓ ↓
XX — XX	1 100X	L	L		16,376 Add.
XX XX	1 101X	L	L		16,378 Add.
XX XX	1 110X	L	L		16,380 Add.
XX — XX	1 111X	L	L		16,382 Add.

Notes: *1. $H = V_{IH}$, $L = V_{IL}$, X = Either 0 or 1.

*2. Attribute memory can not be accessed.

■ PROGRAM/ERASE CHIP DECODING TABLE

Bus Organization	Œ2	Œ₁	A 23	A 22	A 21	Ao	Decode Chips
					L	L	Chip 0
				L	L	Н	Chip 1
					Н	L	Chip 2
			L		11	Н	Chip 3
			<u> </u>		L	L	Chip 4
			н	L	Н	Chip 5	
				11	Н	L	Chip 6
	Н	L			11	Н	Chip 7
	11	<u> </u>			L	L	Chip 8
				L	L	Н	Chip 9
	8-bit Bus			L	Н	L	Chip 10
9 hit Dug			Н		11	Н	Chip 11
o-bit bus			Н	Н	L	L	Chip 12
					_	Н	Chip 13
				11	ы	L	Chip 14
					H	Chip 15	
			L	L	L	X	Chip 1
					Н		Chip 3
			L	Н	L		Chip 5
	L	Н		Н	Н		Chip 7
	L	П		L	L	^	Chip 9
			Н	L	Н		Chip 11
			П	Н	L		Chip 13
				П	Н		Chip 15
				L	L		Chip 0, Chip 1
			L	L	Н		Chip 2, Chip 3
			L	Н	L		Chip 4, Chip 5
16-bit Bus	L				Н	_	Chip 6, Chip 7
ro-bit Bus	L	L		L	L	X	Chip 8, Chip 9
			ш	L	Н		Chip 10, Chip 11
			Н	Ы	L		Chip 12, Chip 13
				Н	Н		Chip 14, Chip 15

Note: $H = V_{IH}$, $L = V_{IL}$, $X = Either V_{IH}$ or V_{IL}

■ ERASE BLOCK DECODING TABLE

A 20	A 19	A 18	A 17	Decode Block
			L	Block 0
	L	L	Н	Block 1
	L		L	Block 2
		Н	Н	Block 3
L		1	L	Block 4
	Н	L	Н	Block 5
	П	1.1	L	Block 6
		Н	Н	Block 7
			L	Block 8
	L	L	Н	Block 9
	L	Н	L	Block 10
Н		П	Н	Block 11
"		1	L	Block 12
	Н	L	Н	Block 13
	П	Ц	L	Block 14
		Н		Block 15

Note: $H = V_{IH}$, $L = V_{IL}$, $X = Either V_{IH}$ or V_{IL}

■ CARD CHIP/BLOCK CONFIGURATION

D₁5 ← D8	D ₇ ← D ₀					
UPPER BYTE	LOWER BYTE	×16 bit mode				
ODD BYTE	EVEN BYTE	×8 bit mode				
		-	Chip 1 (8	M Flash Chip)	Chip 0 (8	B M Flash Chip)
Chip 15	Chip 14	1	Block 15	(64 K × 8 bits)	Block 15	(64 K × 8 bits)
Chip 13	Chip 12		Block 14	(64 K × 8 bits)	Block 14	(64 K × 8 bits)
Chip 11	Chip 10] /	Block 13	(64 K × 8 bits)	Block 13	(64 K × 8 bits)
Chip 9	Chip 8] /	•	•	•	•
Chip 7	Chip 6			•	•	•
Chip 5	Chip 4	1 /	Block 2	(64 K × 8 bits)	Block 2	(64 K × 8 bits)
Chip 3	Chip 2]/	Block 1	(64 K × 8 bits)	Block 1	(64 K × 8 bits)
Chip 1	Chip 0		Block 0	(64 K × 8 bits)	Block 0	(64 K × 8 bits)

Card Chip Configuration for 16 MB Card

Block Configuration for 2 Chips

■ COMMAND DEFINITION TABLE

Command Table for 8-bit Mode

Command	Bus Cycle	First	Bus Cycle		Second Bus Cycle			
Command	Required	Operation *1	Address *2	Data *3	Operation *1	Address *2	Data *3	
Read Memory/Reset	1	Write	DA	FFH	_	_	_	
Read Intelligent ID Codes *4	3	Write	DA	90H	Read	IA	ID	
Setup Erase/Erase *5	2	Write	ZA	20H	Write	ZA	D0H	
Erase Suspend *7 /Erase Resume	2	Write	DA	вон	Write	DA	D0H	
Setup Program/ Program *6	2	Write	WA	40H	Write	WA	WD	
Alternate Setup Program/Program *6	2	Write	WA	10H	Write	WA	WD	
Read Status Register	2	Write	DA	70H	Read	DA	SRD	
Clear Status Register	1	Write	DA	50H	_	_	_	

Command Table for 16-bit Mode

Command	Bus Cycle	First	Bus Cycle		Secor	nd Bus Cycle	
Command	Required	Operation *1	Address *2	Data *3	Operation *1	Address *2	Data *3
Read Memory/Reset	1	Write	DA	FFFFH	_	_	_
Read Intelligent ID Codes *4	3	Write	DA	9090H	Read	IA	ID
Setup Erase/Erase *5	2	Write	ZA	2020H	Write	ZA	D0D0H
Erase Suspend *7 /Erase Resume	2	Write	DA	вовон	Write	DA	D0D0H
Setup Program/ Program *6	2	Write	WA	4040H	Write	WA	WD
Alternate Setup Program/Program *6	2	Write	WA	1010H	Write	WA	WD
Read Status Register	2	Write	DA	7070H	Read	DA	SRD
Clear Status Register	1	Write	DA	5050H	_	_	_

Notes: *1. Bus operations are defined in "FUNCTIONAL TRUTH TABLE".

*2. DA = Address in selected chip

IA = Identifier address: 00H for manufacturer code, 01H for device code.

WA = Address of memory location to be programmed.

ZA = Address of 128 K-Byte zones involved in erase operation.

Addresses are latched on the rising edge of the Write Enable pulse or Card Enable pulse.

*3. ID = Data read from location IA during device identification.

Manufacturer = 89H for 8-bit, 8989H for 16-bit/Device = A2H for 8-bit, A2A2H for 16-bit SRD = Data of Status Register.

WD = Data to be programmed at location WA. Data is latched on the rising edge of Write Enable or Card Enable.

- *4. Following the Read Intelligent ID command, two read operations access manufacturer and device codes.
- *5. "ERASE FLOWCHART" in Fig.5 illustrates the Erase Algorithm.
- *6. "PROGRAM FLOWCHART" in Fig.4 illustrates the Program Algorithm.
- *7. "ERASE SUSPEND LOOP" in Fig.6 illustrates the Erase Suspend Algorithm.

■ STATUS REGISTER DEFINITIONS

8-BIT BUS ORGANIZATION

STATUS REGISTER	WSMS	ESS	ES	BPS	VPPS	R	R	R
BIT	7	6	5	4	3	2	1	0

16-BIT BUS ORGANIZATION

STATUS REGISTER	WSMS	ESS	ES	BPS	VPPS	R	R	R
BIT	7	6	5	4	3	2	1	0
STATUS REGISTER	WSMS	ESS	ES	BPS	VPPS	R	R	R
BIT	15	14	13	12	11	10	9	8

WSMS (Write State Machine Status)

1 = Ready

0 = Busy

Byte write or block erase completion can be checked with WSMS bit.

"1" of Ready status is output at erase suspended condition.

ESS (Erase Suspend Status)

1 = Erase Suspended

0 = Erase In Process/Completed

When Erase operation is suspended, "1" is output from ESS bit.

ES (Erase Status)

1 = Error in Block Erase

0 = Successful Block Erase

ES bit indicates whether the erase operation was successfully performed.

BPS (Byte Program Status)

1 = Error in Byte Program

0 = Successful Byte Program

BPS bit indicates whether the byte program operation was successfully performed.

VPPS (VPPS Status)

 $1 = V_{PP}$ Low Detect; Operation Abort $0 = V_{PP}$ OK

VPPS bit indicates VPP status before program/erase operation, and does not detect the status in program/erase operation.

R (Reserve)

"0" is output during Status Register output.

Clear Status Register Command

ES, BPS and VPPS are cleared by input of Clear Status Register Command. These Status Register bits must be cleared before Program/Erase operations are executed.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Note	Symbol	Value	Unit
Supply Voltage		Vcc	-0.5 to +6.0	V
Input Voltage		Vin	-0.5 to Vcc +0.5	V
Output Voltage		Vоит	−0.5 to Vcc +0.5	V
Programming Voltage	*1	V _{PP1} , V _{PP2}	-2.0 to +14.0	V
Ambient Temperature		TA	0 to +60	°C
Storage Temperature		Тѕтс	-30 to +70	°C

Note: *1. Minimum DC input voltage is -0.5 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter N	lotes	Symbol	Min.	Тур.	Max.	Unit
Vcc Supply Voltage		Vcc	4.75	5.0	5.25	V
Ground		GND	_	0	_	V
Input Low Voltage		VIL	-0.3	_	0.8	V
Input High Voltage		VIH	2.4	_	Vcc +0.3	V
V _{PP} during Read-Only Operation	*1	V _{PPL}	0	_	6.5	V
VPP during Program/Erase Operation		V _{PPH}	11.4	12.0	12.6	V
Ambient Temperature		TA	0	_	55	°C

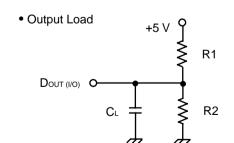
Note: *1. Program/Erase are inhibited when VPP = VPPL.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE


 $(T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{IN} = V_{I/O} = GND)$

Parameter !	Notes	Symbol	Min.	Max.	Unit
Input Capacitance	*1	Cin	_	50	pF
I/O Capacitance	*2	C _{I/O}	_	50	pF

Notes: *1. This value does not apply to \overline{CE}_1 , \overline{CE}_2 , \overline{WE} and \overline{REG} .

*2. This value does not apply to \overline{CE}_1 , \overline{CE}_2 , BVD1 and BVD2.

- Input Pulse Levels: VIH = 2.6 V, VIL = 0.6 V
- Input Pulse Rise and Fall Times: 5 ns (Transient between 0.8 V and 2.4 V)
- Timing Reference Levels

Input: $V_{IL} = 0.8 \text{ V}$, $V_{IH} = 2.4 \text{ V}$ Output: $V_{OL} = 0.8 \text{ V}$, $V_{OH} = 2.0 \text{ V}$

* Including jig and stray capacitance

	R1	R2	C∟	Parameter Measured
Load I	1.8 kΩ	990 Ω	100 pF	All parameters except tclz, tolz, tchz, tohz, trclz, trolz, trchz and trohz
Load II	1.8 kΩ	990 Ω	5 pF	tclz, tolz, tchz, tohz, trclz, trolz, trchz and trohz

■ DC CHARACTERISTICS

Parameter Notes		Symbol	Condition		Value		Unit
Parameter	Notes	Symbol	Condition	Min.	Тур.	Max.	Ullit
Input Leakage Current	*1	lu	Vcc = Vcc max V _{IN} = 0 V or Vcc	_	±1.0	±20	μΑ
Output Leakage Current	*2	ILO	Vcc = Vcc max V _{IN} = 0 V or Vcc	_	±1.0	±20	μА
Standby Current		I _{SB1}	$\frac{V_{CC} = V_{CC} \text{ max}}{CE_1 = CE_2 = V_{CC} - 0.2 \text{ V}}$	_	0.5	1.7	mA
Standby Current		I _{SB2}	$\frac{V_{CC} = V_{CC} \text{ max}}{CE_1 = CE_2 = V_{IH}}$	_	4.0	8.0	mA
Active Read Current		Icc1	$\label{eq:condition} \begin{array}{l} V_{CC} = V_{CC} \; max \\ \hline CE_1 = CE_2 = V_{IL} \\ Cycle = 200 \; ns \\ I_{OUT} = 0 \; mA \end{array}$	_	110	150	mA
Program Current		Icc2	Program in progress	_	20	60	mA
Erase Current		Іссз	Erase in progress	_	20	60	mA
Erase Suspend Current	*4	Icces	Erase Suspend CE1 = CE2 = VIH	_	10	20	mA
VPP Read Current or	*5	I _{PP1}	VPP > VCC	_	0.9	1.8	mA
Standby Current	5	IPP1	V _{PP} ≤ V _{CC}	_	_	175	μΑ
VPP Program Current	*5	IPP2	V _{PP} = V _{PPH} Program in progress	_	10	30	mA
VPP Erase Current	*5	І РР3	V _{PP} = V _{PPH} Erase in progress	_	10	30	mA
Output Low Voltage		Vol	IoL = 3.2 mA Vcc = Vcc min	_	_	0.4	V
Output High Voltage	*3	Vон	Iон = -2.0 mA Vcc = Vcc min	3.8	_	_	V

Notes: *1. This value does not apply to \overline{CE}_1 , \overline{CE}_2 , \overline{WE} and \overline{REG} .

^{*2.} This value does not apply to BVD1, BVD2, \overline{CD}_1 and \overline{CD}_2 .

^{*3.} This value does not apply to BVD1 and BVD2.

^{*4.} The read current during erase-suspend operation = Icces + Icc1.

^{*5.} These values for V_{PP1} and V_{PP2}.

■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

MAIN MEMORY PROGRAM/ERASE PERFORMANCE

Parameter	Min.	Тур.	Max.	Unit
Block Erase Time	_	1.6 *	10	Sec.
Block Program Time	_	0.6 *	2.1	Sec.
Program/Erase Cycle	10,000	100,000	_	Cycle

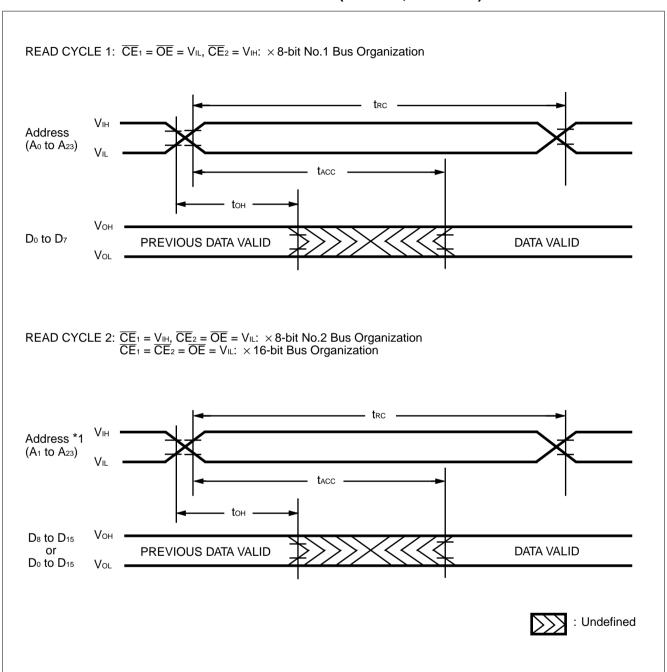
^{*:} The conditions of typical values are T_A = 25°C, V_{PP} = 12 V, 10,000 cycles by algorithm).

ATTRIBUTE MEMORY PROGRAM PERFORMANCE

Parameter	Min.	Тур.	Max.	Unit
Byte Program Time	_	_	10	mS
Number of Program per Byte	10,000	_	_	Times

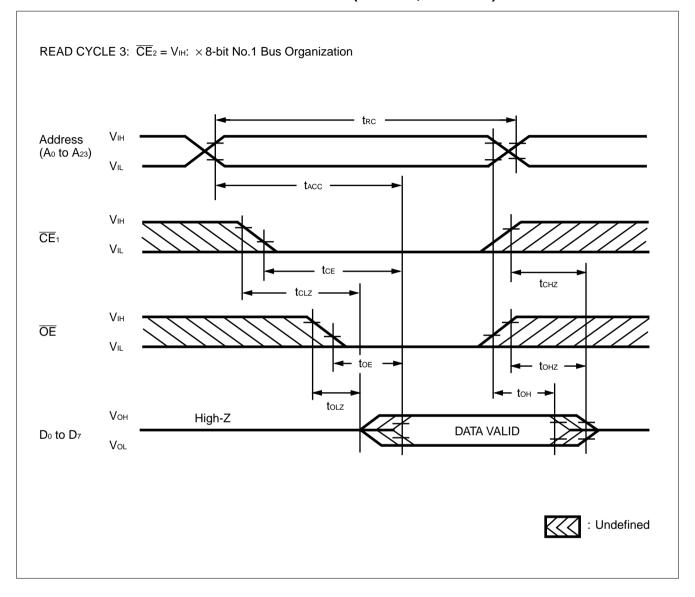
MAIN MEMORY READ CYCLE *1

Parameter	Notes	Symbol	Min.	Max.	Unit
Read Cycle Time		t RC	200	_	ns
Card Enable Access Time		t ce	_	200	ns
Address Access Time		t ACC	_	200	ns
Output Enable Access Time		t oe	_	100	ns
Card Enable to Output in Low-Z	*2	t cLZ	5	_	ns
Card Disable to Output in High-Z	*2	t cHZ	_	60	ns
Output Enable to Output in Low-Z	*2	t olz	5	_	ns
Output Disable to Output in High-Z	*2	t oнz	_	60	ns
Output Hold from Address, CE, or OE Change	*3	tон	5	_	ns

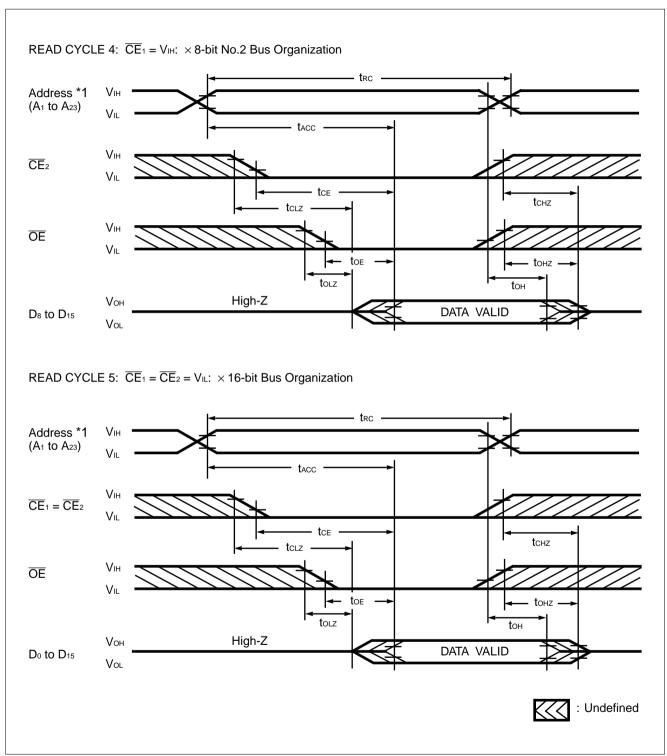

ATTRIBUTE MEMORY READ CYCLE *1*4

Parameter	Notes	Symbol	Min.	Max.	Unit
Read Cycle Time		t rrc	300	_	ns
Address Access Time		t raa	_	300	ns
Card Enable Access Time		t RCE	_	300	ns
Output Enable Access Time		t roe	_	150	ns
Output Hold from Address Change		t ROH	5	_	ns
Card Enable to Output Low-Z	*2	t RCLZ	5	_	ns
Output Enable to Output Low-Z	*2	t ROLZ	5	_	ns
Card Enable to Output High-Z	*2	t RCHZ	_	60	ns
Output Enable to Output High-Z	*3	t ROHZ	_	60	ns

Notes: *1. Rise/Fall time < 5 ns.

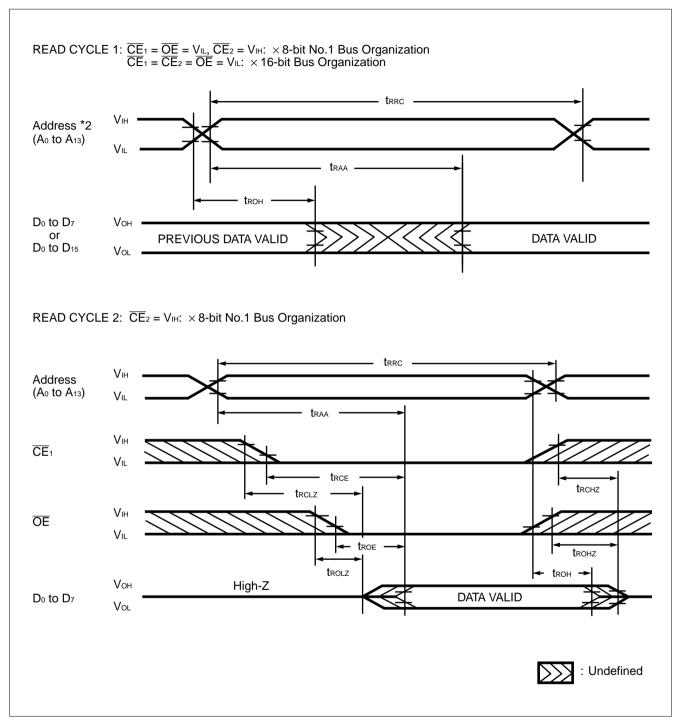

- *2. Transition is measured at the point of ±500 mV from steady state voltage. This parameter is specified using Load II in Fig.3.
- *3. This parameter is specified from the rising edge of \overline{OE} , \overline{CE}_1 and \overline{CE}_2 , whichever occurs first.
- *4. This parameter is for MB98A81133, 81233, 81333, and 81433.

MAIN MEMORY READ CYCLE TIMING DIAGRAM (WE = VIH, REG = VIH)



Note: *1. $A_0 = Either V_{IH} or V_{IL}$.

MAIN MEMORY READ CYCLE TIMING DIAGRAM (WE = VIH, REG = VIH)



MAIN MEMORY READ CYCLE TIMING DIAGRAM (WE = VIH, REG = VIH)

Note: *1. $A_0 = Either V_{IL} or V_{IH}$.


ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM (WE = VIH, REG = VIL) *1

Notes: *1. This timing diagram is for MB98A81133, 81233, 81333, and 81433. "FF" data is available on MB98A81132, 81232, 81332, and 81432 only.

^{*2.} $A_0 = V_{IL}$ or V_{IH} at $\times 16$ -bit bus organization.

ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM (WE = VIH, REG = VIL) *1

Notes: *1. This timing diagram is for MB98A81133, 81233, 81333, and 81433. "FF" data is available on MB98A81132, 81232, 81332, and 81432 only.

^{*2.} $A_0 = Either V_{IH} or V_{IL}$.

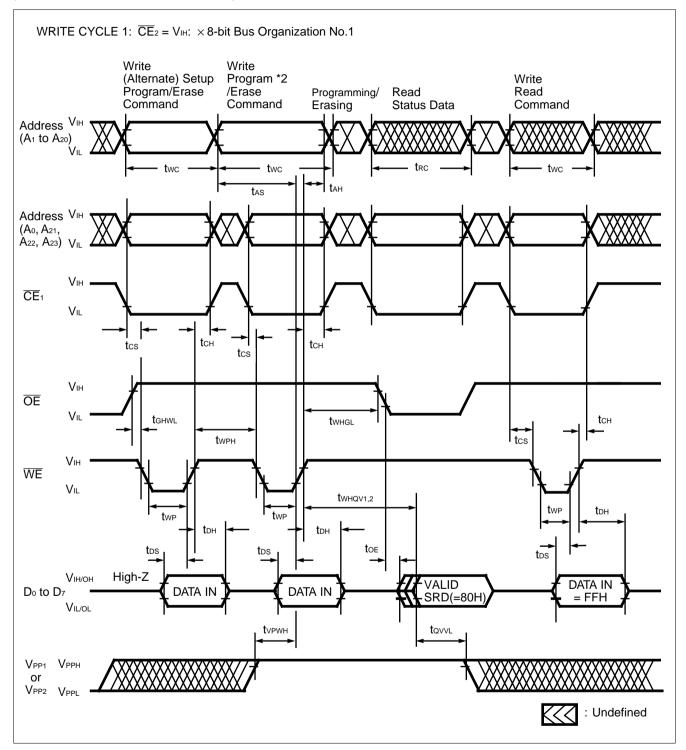
^{*3.} H-level is output from D_8 to D_{15} .

MAIN MEMORY PROGRAM/ERASE CYCLE *1 *2

Parameter	Notes	Symbol	Min.	Max.	Unit
Write Cycle Time		twc	200	_	ns
Address Set Up Time		t AS	100	_	ns
Address Hold Time		t AH	30	_	ns
Data Setup Time		t DS	80	_	ns
Data Hold Time		t DH	25	_	ns
Write Recovery Time before Read (WE control)		t whgL	10	_	μs
Write Recovery Time before Read (CE control)		t EHGL	10	_	μs
Read Recover Time		t GHWL	0	_	ns
Card Enable Setup Time before Write		t cs	0	_	ns
Card Enable Hold Time		tсн	0	_	ns
Write Enable Pulse Width		twp	100	_	ns
Write Enable Pulse Width High		t wph	60	_	ns
Write Enable Setup Time		tws	0	_	ns
Write Enable Hold Time		twн	0	_	ns
Card Enable Pulse Width		t CP	100	_	ns
Card Enable Pulse Width High		t cph	60	_	ns
Duration of Byte Program Operation (WE Control)	*3	t whqv1	6	_	μs
Duration of Block Erase Operation (WE Control)	*3	t whqv2	0.3	_	s
Duration of Byte Program Operation (CE Control)	*3	t ehqv1	6	_	μs
Duration of Block Erase Operation (CE Control)	*3	t EHQV2	0.3	_	S
VPP Setup Time to Write Enable Low		t vpwh	100	_	ns
VPP Setup Time to Chip Enable Low		t vpeh	100	_	ns
VPP Hold Time		t qvvl	0	_	ns

Notes: *1. Read timing parameters during Program/Erase operations are the same as those during read only operations.

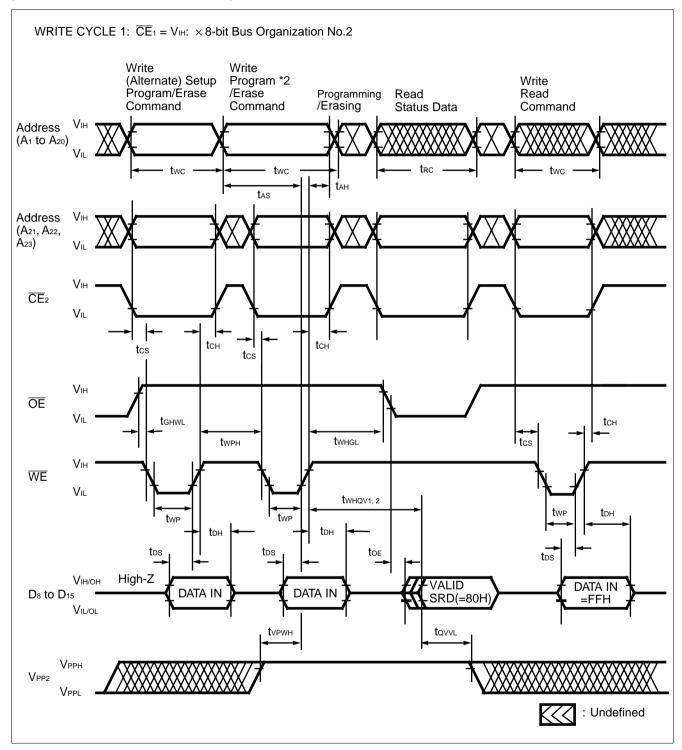
Refer to AC characteristics for Main Memory Read Cycle.


- *2. Rise/Fall time \leq 5 ns.
- *3. The integrated stop timer terminates the Program/Erase operations, thereby eliminating the necessary for a maximum specification.

ATTRIBUTE MEMORY PROGRAM CYCLE *1

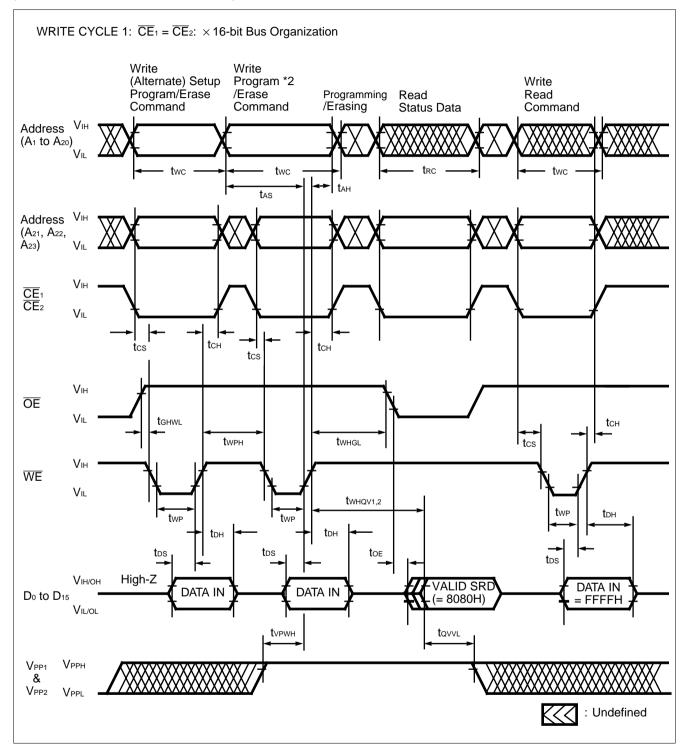
Parameter	Symbol	Min.	Max.	Unit
Address Setup Time	t ras	20	_	ns
Card Enable Setup Time	trcs	0	_	ns
Output Enable Setup Time	troes	20	_	ns
Write Pulse Width	t RWP	100	_	ns
Address Hold Time	t rah	50	_	ns
Data Setup Time	t RDS	50	_	μs
Data Hold Time	t RDH	20	_	ns
Card Enable Hold Time	t RCH	0	_	ns
Output Enable Hold Time	t ROEH	20	_	ns
Program Time	trwr	_	10	ms
Program Recovery Time	trre	50	_	ns
End of Program to Output Time	t rrbo	_	100	ns
Write Enable Hold Time	t RWEH	10	_	ns

Note: *1. This parameter is for MB98A81133, 81233, 81333, and 81433.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (WE = CONTROLLED, $\overline{REG} = V_{IH}$) *1

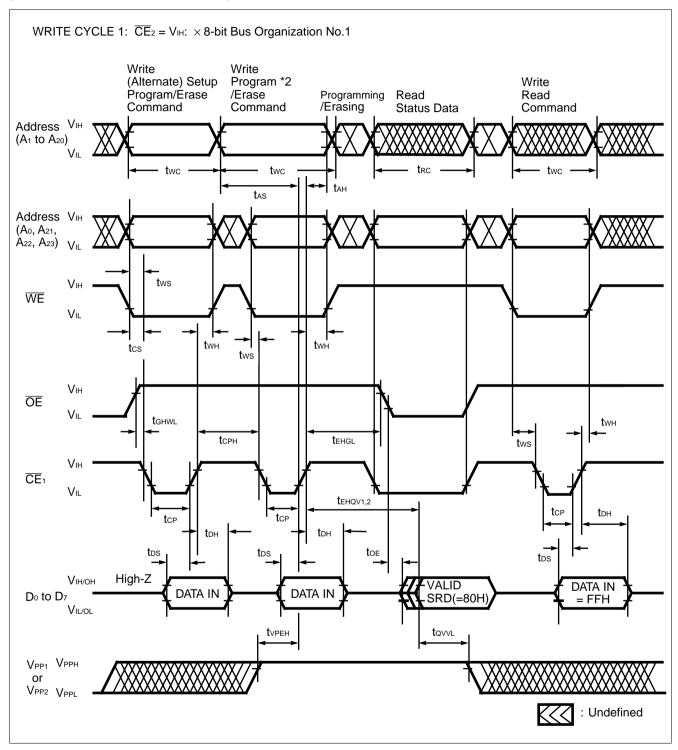
Notes: *1. A₀, A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION.

*2. Latch address and data.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (WE = CONTROLLED, \overline{REG} = V_{IH}) *1

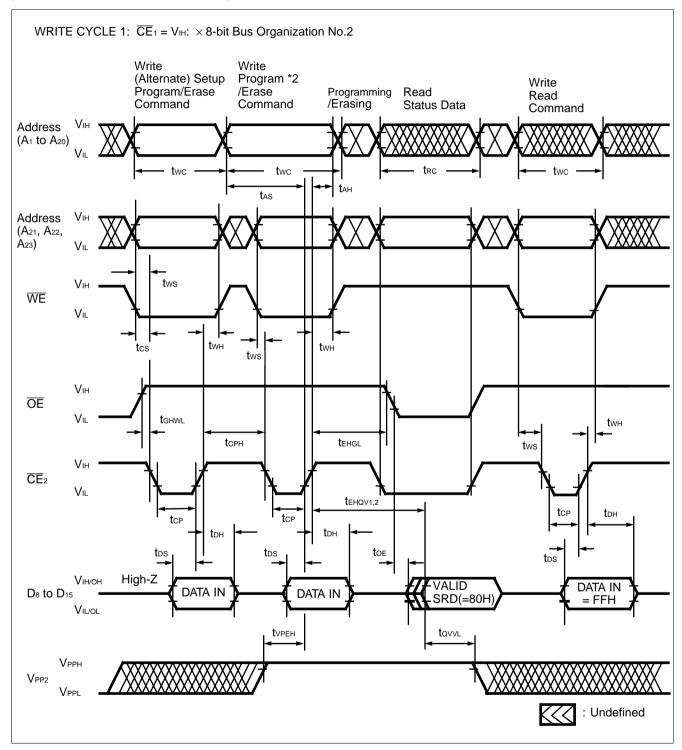
Notes: *1. A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION. A₀ = Either V_{IL} or V_{IH}.

^{*2.} Latch address and data.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (WE = CONTROLLED, \overline{REG} = V_{IH}) *1

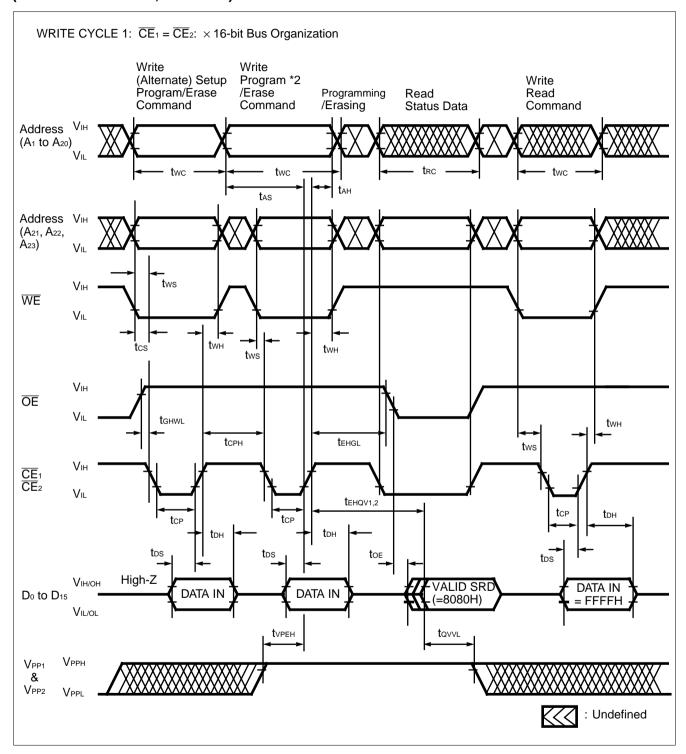
Notes: *1. A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION. A₀ = Either V_{IL} or V_{IH}.

^{*2.} Latch address and data.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (\overline{CE} = CONTROLLED, \overline{REG} = V_{IH}) *1

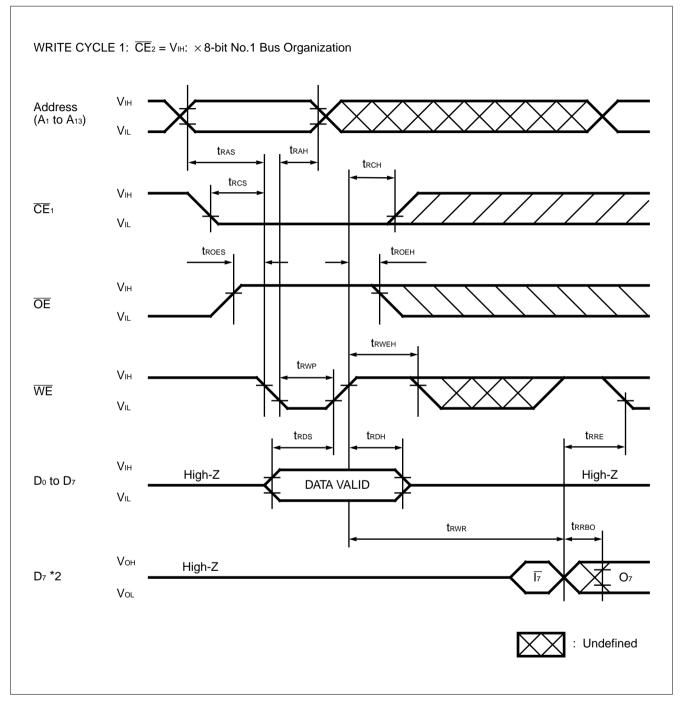
Notes: *1. A₀, A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION.

*2. Latch address and data.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (\overline{CE} = CONTROLLED, \overline{REG} = VIH) *1

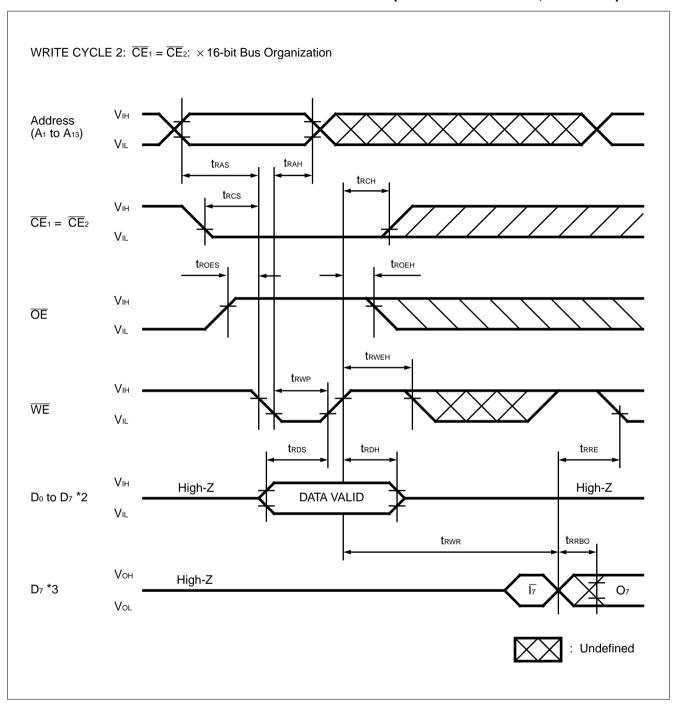
Notes: *1. A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION. A₀ = V_{IL} or V_{IH} .

^{*2.} Latch address and data.


MAIN MEMORY PROGRAM & ERASE CYCLE TIMING DIAGRAM (\overline{CE} = CONTROLLED, \overline{REG} = V_{IH}) *1

Notes: *1. A₂₁, A₂₂ and A₂₃ have to be fixed during programming command input because these addresses are chip decoding addresses. Refer to the PROGRAM/ERASE CHIP DECODING INFORMATION. A₀ = V_{IL} or V_{IH}.

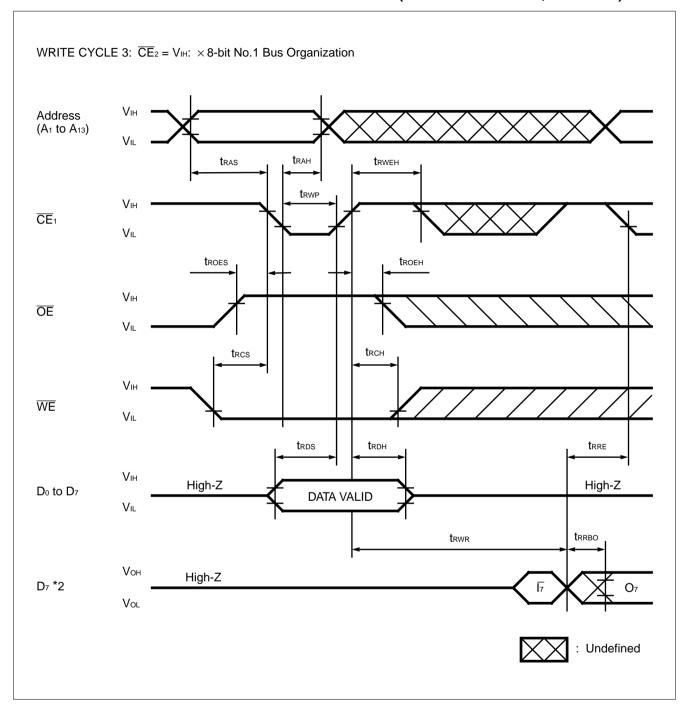
^{*2.} Latch address and data.


ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (\overline{WE} = CONTROLLED, \overline{REG} = V_{IL}) *1

Notes: *1. This timing diagram is for MB98A81133, 81233, 81333, and 81433. "FF" data is available on MB98A81132, 81232, 81332, and 81432 only. $A_0 = V_{\perp}$.

^{*2.} Data polling operation.

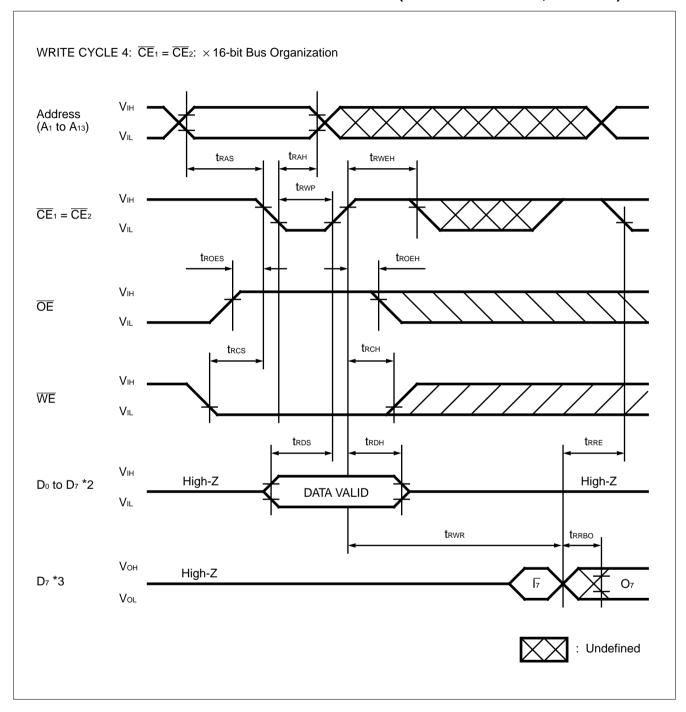
ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (\overline{WE} = CONTROLLED, \overline{REG} = V_{IL}) *1



Notes: *1. This timing diagram is for MB98A81133, 81233, 81333, and 81433. "FF" data is available on MB98A81132, 81232, 81332, and 81432 only. $A_0 = V_{IH}$ or V_{IL} .

^{*2.} Inputs from D_8 to D_{15} are not defined.

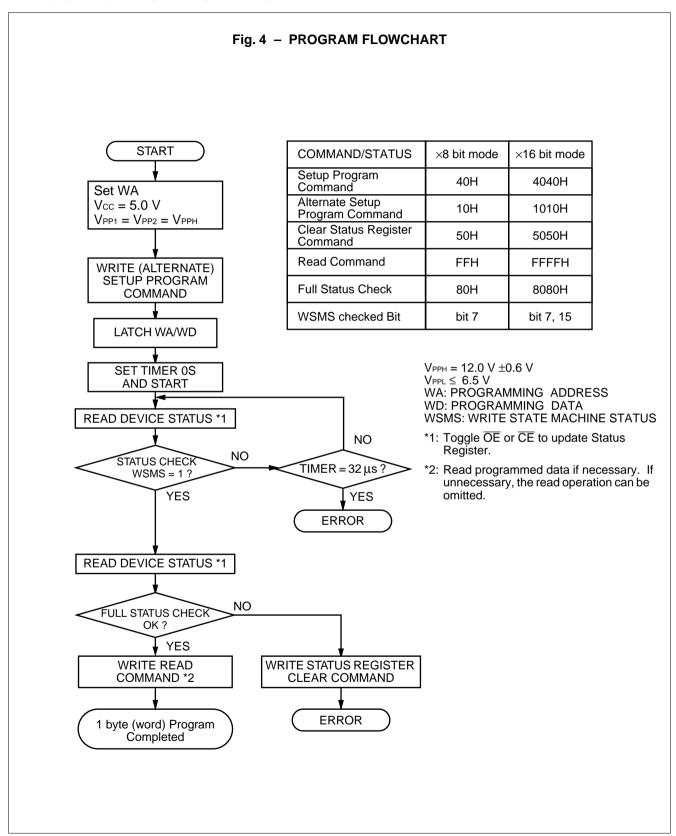
^{*3.} Data polling operation.


ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = VIL) *1

Notes: *1. This timing diagram is for MB98A81133, 81233, 81333 and 81433. $A_0 = V_{IL}$.

^{*2.} Data polling operation.

ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = VIL) *1



Notes: *1. This timing diagram is for MB98A81133, 81233, 81333, and 81433. $A_0 = V_{IL}$ or V_{IH} .

^{*2.} Inputs from D₈ to D₁₅ are not defined.

^{*3.} Data polling operation.

■ PROGRAM/ERASE INFORMATION

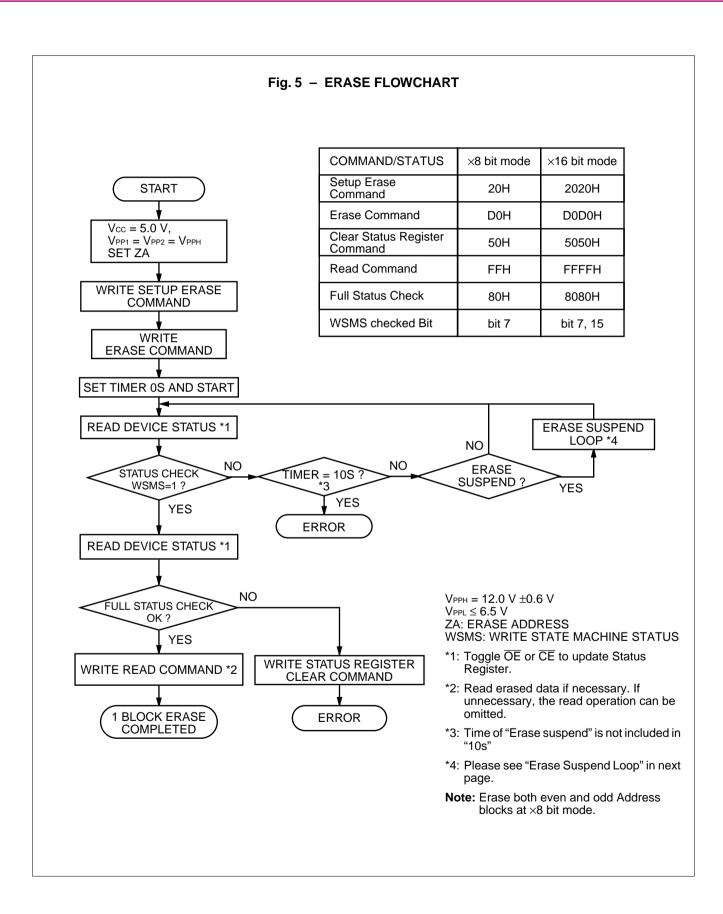
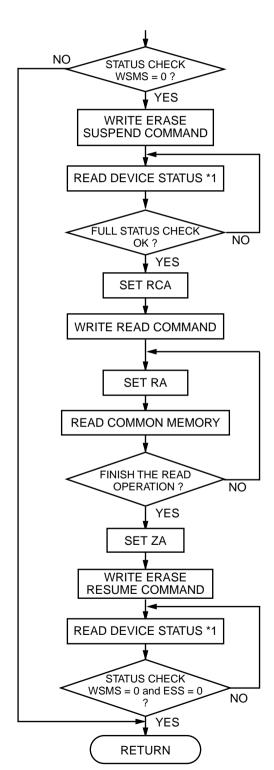



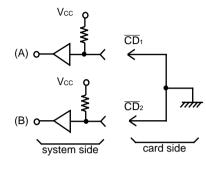
Fig. 6 - ERASE SUSPEND LOOP

COMMAND/STATUS	×8 bit mode	×16 bit mode
Erase Suspend Command	ВОН	В0В0Н
Erase Resume Command	D0H	D0D0H
Read Command	FFH	FFFFH
Full Status Check	C0H	C0C0H
WSMS checked Bit	bit 7	bit 7, 15
ESS checked Bit	bit 6	bit 6, 14

ZA: ERASE ADDRESS WSMS: WRITE STATE MACHINE STATUS ESS: ERASE SUSPEND STATUS RCA: ADDRESS IN READ CHIP

RA: READ ADDRESS

*1: Toggle OE or CE to update Status Register.


■ UNIQUE FEATURES FOR FLASH MEMORY CARD

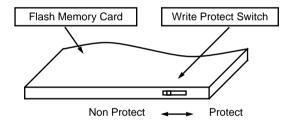
1. SPECIAL MONITORING PINS

1.1 \overline{CD}_1 , \overline{CD}_2 : Card Detection Pins

 $\overline{CD_1}$ and $\overline{CD_2}$ are to detect whether or not the card has been correctly inserted. (See Fig. 7.)

When the memory card has been correctly inserted, \overline{CD}_1 and \overline{CD}_2 are detected by the system. \overline{CD}_1 , \overline{CD}_2 are tied to ground on the card side as shown in Fig. 7.

- Fig. 7 -

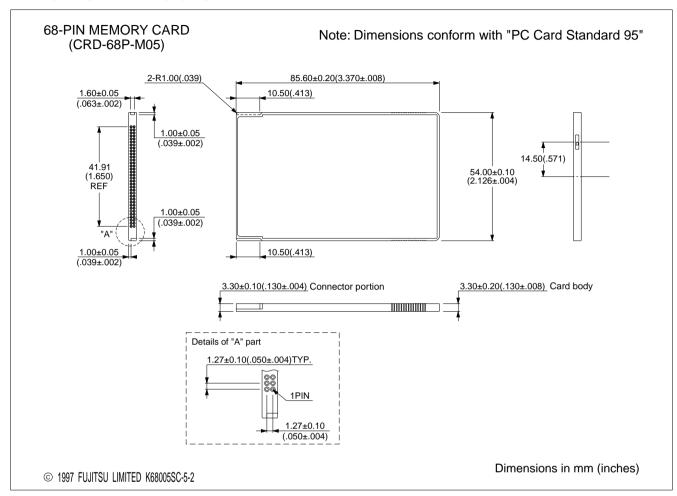

1.2 WP: Write Protect Pins

This pin monitors the position of the Write Protect switch. As shown in Fig. 8, the Flash memory card has a Write Protect switch at the top of the card.

To write to the card, the switch must be turned to the "Non Protect" position and the WE pin low. And at that time, L-level is output on the WP pin.

To prevent writing to the card, the switch must be turned to the "Protect" position. At that time, H-level is output on the WP pin.

WP Switch	WP (output)
Protect	Н
Non Protect	L


– Fig. 8 –

■ DEVICE HANDLING PRECAUTIONS

This device in composed of fine electronic parts, so take care in handling or keeping it as below.

- The card is made fine, so do not keep it in the high temperature nor high humiditly, place like in the direct sunshine nor near the heater.
- The card shoud not be bent, scratched, dropped nor be shocked violently.
- This device shoud never be taken a part. It could destroy the card or your personal computer hardware.
- To help you handle this device safely, request us the device specifications when purchasing this device.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9706

© FUJITSU LIMITED Printed in Japan